

DOWNLOAD EBOOK : INTRODUCTION TO ROBOTICS: MECHANICS AND CONTROL (3RD EDITION) BY JOHN J. CRAIG PDF

🛡 Free Download

Click link bellow and free register to download ebook: INTRODUCTION TO ROBOTICS: MECHANICS AND CONTROL (3RD EDITION) BY JOHN J. CRAIG

DOWNLOAD FROM OUR ONLINE LIBRARY

Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig. Satisfied reading! This is just what we want to claim to you who love reading a lot. Exactly what about you that assert that reading are only obligation? Don't bother, checking out behavior ought to be begun with some particular factors. One of them is checking out by responsibility. As exactly what we intend to offer right here, the book entitled Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig is not kind of obligated e-book. You can enjoy this e-book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig to check out.

From the Back Cover

An essential book for engineers developing robotic systems, as well as anyone involved with the mechanics, control, or programming of robotic systems. Now in its third edition, the first edition of this classic text was published approximately 20 years ago. The second edition has been in print and highly successful for 16 years.

The book introduces the science and technology of mechanical manipulation. The third edition is organized into 13 chapters.

Numerous exercises and a programming assignment appear at the end of each chapter. Computational aspects of problems are emphasized throughout the book. New in the third edition are MATLAB® exercises.

Excerpt. © Reprinted by permission. All rights reserved.

Scientists often have the feeling that, through their work, they are learning about some aspect of themselves. Physicists see this connection in their work; so do, for example, psychologists and chemists. In the study of robotics, the connection between the field of study and ourselves is unusually obvious. And, unlike a science that seeks only to analyze, robotics as currently pursued takes the engineering bent toward synthesis. Perhaps it is for these reasons that the field fascinates so many of us.

The study of robotics concerns itself with the desire to synthesize some aspects of human function by the use of mechanisms, sensors, actuators, and computers. Obviously, this is a huge undertaking, which seems certain to require a multitude of ideas from various "classical" fields.

Currently, different aspects of robotics research are carried out by experts in various fields. It is usually not the case that any single individual has the entire area of robotics in his or her grasp. A partitioning of the field is natural to expect. At a relatively high level of abstraction, splitting robotics into four major areas seems reasonable: mechanical manipulation, locomotion, computer vision, and artificial intelligence.

This book introduces the science and engineering of mechanical manipulation. This subdiscipline of robotics has its foundations in several classical fields. The major relevant fields are mechanics, control theory, and computer science. In this book, Chapters 1 through 8 cover topics from mechanical engineering and mathematics, Chapters 9 through 11 cover control-theoretical material, and Chapters 12 and 13 might be classed as computer-science material. Additionally, the book emphasizes computational aspects of the problems throughout; for example, each chapter that is concerned predominantly with mechanics has a brief section devoted to computational considerations.

This book evolved from class notes used to teach "Introduction to Robotics" at Stanford University during the autumns of 1983 through 1985. The first and second editions have been used at many institutions from 1986 through 2002. The third edition has benefited from this use and incorporates corrections and improvements due to feedback from many sources. Thanks to all those who sent corrections to the author.

This book is appropriate for a senior undergraduate- or first-year graduate-level course. It is helpful if the student has had one basic course in statics and dynamics and a course in linear algebra and can program in a high-level language. Additionally, it is helpful, though not absolutely necessary, that the student have completed an introductory course in control theory. One aim of the book is to present material in a simple, intuitive way. Specifically, the audience need not be strictly mechanical engineers, though much of the material is taken from that field. At Stanford, many electrical engineers, computer scientists, and mathematicians found the book quite readable.

Directly, this book is of use to those engineers developing robotic systems, but the material should be viewed as important background material for anyone who will be involved with robotics. In much the same way that software developers have usually studied at least some hardware, people not directly involved with the mechanics and control of robots should have some such background as that offered by this text.

Like the second edition, the third edition is organized into 13 chapters. The material will fit comfortably into an academic semester; teaching the material within an academic quarter will probably require the instructor to choose a couple of chapters to omit. Even at that pace, all of the topics cannot be covered in great depth. In some ways, the book is organized with this in mind; for example, most chapters present only one approach to solving the problem at hand. One of the challenges of writing this book has been in trying to do justice to the topics covered 'within the time constraints of usual teaching situations. One method employed to this end was to consider only material that directly affects the study of mechanical manipulation.

At the end of each chapter is a set of exercises. Each exercise has been assigned a difficulty factor, indicated in square brackets following the exercise's number. Difficulties vary between 00 and 50, where 00 is trivial and 50 is an unsolved research problem. Of course, what one person finds difficult, another might find easy, so some readers will find the factors misleading in some cases. Nevertheless, an effort has been made to appraise the difficulty of the exercises.

At the end of each chapter there is a programming assignment in which the student applies the subject matter of the corresponding chapter to a simple three-jointed planar manipulator. This simple manipulator is complex enough to demonstrate nearly all the principles of general manipulators without bogging the student down in too much complexity. Each programming assignment builds upon the previous ones, until, at the end of the course, the student has an entire library of manipulator software.

Additionally, with the third edition we have added MATLAB exercises to the book. There are a total of 12 MATLAB exercises associated with Chapters 1 through 9. These exercises were developed by Prof. Robert L. Williams II of Ohio University, and we are greatly indebted to him for this contribution. These exercises can be used with the MATLAB Robotics Toolbox created by Peter Corke, Principal Research Scientist with

CSIRO in Australia.

Chapter 1 is an introduction to the field of robotics. It introduces some background material, a few fundamental ideas, and the adopted notation of the book, and it previews the material in the later chapters.

Chapter 2 covers the mathematics used to describe positions and orientations in 3-space. This is extremely important material: By definition, mechanical manipulation concerns itself with moving objects (parts, tools, the robot itself) around in space. We need ways to describe these actions in a way that is easily understood and is as intuitive as possible.

Chapters 3 and 4 deal with the geometry of mechanical manipulators. They introduce the branch of mechanical engineering known as kinematics, the study of motion without regard to the forces that cause it. In these chapters, we deal with the kinematics of manipulators, but restrict ourselves to static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and static forces.

In Chapter 6, we deal for the first time with the forces and moments required to cause motion of a manipulator. This is the problem of manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator in terms of trajectories through space.

Chapter 8 many topics related to the mechanical design of a manipulator. For example, how many joints are appropriate, of what type should they be, and how should they be arranged?

In Chapters 9 and 10, we study methods of controlling a manipulator (usually with a digital computer) so that it will faithfully track a desired position trajectory through space. Chapter 9 restricts attention to linear control methods; Chapter 10 extends these considerations to the nonlinear realm.

Chapter 11 covers the field of active force control with a manipulator. That is, we discuss how to control the application of forces by the manipulator. This mode of control is important when the manipulator comes into contact with the environment around it, such as during the washing of a window with a sponge.

Chapter 12 overviews methods of programming robots, specifically the elements needed in a robot programming system, and the particular problems associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems, which represent the latest extension to the man-robot interface.

I would like to thank the many people who have contributed their time to helping me with this book. First, my thanks to the students of Stanford's ME219 in the autumn of 1983 through 1985, who suffered through the first drafts, found many errors, and provided many suggestions. Professor Bernard Roth has contributed in many ways, both through constructive criticism of the manuscript and by providing me with an environment in which to complete the first edition. At SILMA Inc., I enjoyed a stimulating environment, plus resources that aided in completing the second edition. Dr. Jeff Kerr wrote the first draft of Chapter 8. Prof. Robert L. Williams II contributed the MATLAB exercises found at the end of each chapter, and Peter Corke expanded his Robotics Toolbox to support this book's style of the Denavit-Hartenberg notation. I owe a debt to my previous mentors in robotics: Marc Raibert, Carl Ruoff, Tom Binford, and Bernard Roth.

Many others around Stanford, SILMA, Adept, and elsewhere have helped in various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling, A1 Barr, Stephen Boyd, Chuck Buckley, Joel Burdick, Jim

Callan, Brian Carlisle, Monique Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal, Chris Goad, Ron Goldman, Bill Hamilton, Steve Holland, Peter Jackson, Eric Jacobs, Johann Jager, Paul James, Jeff Kerr, Oussama Khatib, Jim Kramer, Dave Lowe, Jim Maples, Dave Marimont, Dave Meer, Kent Ohlund, Madhusudan Raghavan, Richard Roy, Ken Salisbury, Bruce Shimano, Donalda Speight, Bob Tilove, Sandy Wells, and Dave Williams.

The students of Prof. Roth's Robotics Class of 2002 at Stanford used the second edition and forwarded many reminders of the mistakes that needed to get fixed for the third edition.

Finally I wish to thank Tom Robbins at Prentice Hall for his guidance with the first edition and now again with the present edition.

J.J.C.

Download: INTRODUCTION TO ROBOTICS: MECHANICS AND CONTROL (3RD EDITION) BY JOHN J. CRAIG PDF

This is it guide **Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig** to be best seller recently. We provide you the best offer by obtaining the stunning book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig in this website. This Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig will not only be the sort of book that is tough to locate. In this internet site, all types of books are provided. You can search title by title, author by author, as well as author by publisher to learn the very best book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig that you could read now.

Just how can? Do you think that you don't need enough time to opt for buying publication Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig Don't bother! Just rest on your seat. Open your kitchen appliance or computer system and be on the internet. You could open up or see the web link download that we supplied to obtain this *Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig* By by doing this, you can get the on-line publication Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig Reading guide Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig by on the internet can be actually done quickly by waiting in your computer system and also gizmo. So, you could continue whenever you have complimentary time.

Reviewing the e-book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig by online could be also done quickly every where you are. It appears that waiting the bus on the shelter, waiting the checklist for queue, or other places possible. This <u>Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig</u> could accompany you because time. It will not make you really feel weary. Besides, through this will certainly also boost your life top quality.

Now in its third edition, Introduction to Robotics by John J. Craig provides readers with real-world practicality with underlying theory presented. With one half of the material from traditional mechanical engineering material, one fourth control theoretical material, and one fourth computer science, the book covers rigid-body transformations, forward and inverse positional kinematics, velocities and Jacobians of linkages, dynamics, linear control, non-linear control, force control methodologies, mechanical design aspects and programming of robots. For engineers.

- Sales Rank: #134416 in Books
- Published on: 2004-08-06
- Ingredients: Example Ingredients
- Original language: English
- Number of items: 1
- Dimensions: 9.30" h x 1.10" w x 7.20" l, 1.45 pounds
- Binding: Hardcover
- 408 pages

From the Back Cover

An essential book for engineers developing robotic systems, as well as anyone involved with the mechanics, control, or programming of robotic systems. Now in its third edition, the first edition of this classic text was published approximately 20 years ago. The second edition has been in print and highly successful for 16 years.

The book introduces the science and technology of mechanical manipulation. The third edition is organized into 13 chapters.

Numerous exercises and a programming assignment appear at the end of each chapter. Computational aspects of problems are emphasized throughout the book. New in the third edition are MATLAB® exercises.

Excerpt. © Reprinted by permission. All rights reserved.

Scientists often have the feeling that, through their work, they are learning about some aspect of themselves. Physicists see this connection in their work; so do, for example, psychologists and chemists. In the study of robotics, the connection between the field of study and ourselves is unusually obvious. And, unlike a science that seeks only to analyze, robotics as currently pursued takes the engineering bent toward synthesis. Perhaps it is for these reasons that the field fascinates so many of us.

The study of robotics concerns itself with the desire to synthesize some aspects of human function by the use of mechanisms, sensors, actuators, and computers. Obviously, this is a huge undertaking, which seems

certain to require a multitude of ideas from various "classical" fields.

Currently, different aspects of robotics research are carried out by experts in various fields. It is usually not the case that any single individual has the entire area of robotics in his or her grasp. A partitioning of the field is natural to expect. At a relatively high level of abstraction, splitting robotics into four major areas seems reasonable: mechanical manipulation, locomotion, computer vision, and artificial intelligence.

This book introduces the science and engineering of mechanical manipulation. This subdiscipline of robotics has its foundations in several classical fields. The major relevant fields are mechanics, control theory, and computer science. In this book, Chapters 1 through 8 cover topics from mechanical engineering and mathematics, Chapters 9 through 11 cover control-theoretical material, and Chapters 12 and 13 might be classed as computer-science material. Additionally, the book emphasizes computational aspects of the problems throughout; for example, each chapter that is concerned predominantly with mechanics has a brief section devoted to computational considerations.

This book evolved from class notes used to teach "Introduction to Robotics" at Stanford University during the autumns of 1983 through 1985. The first and second editions have been used at many institutions from 1986 through 2002. The third edition has benefited from this use and incorporates corrections and improvements due to feedback from many sources. Thanks to all those who sent corrections to the author.

This book is appropriate for a senior undergraduate- or first-year graduate-level course. It is helpful if the student has had one basic course in statics and dynamics and a course in linear algebra and can program in a high-level language. Additionally, it is helpful, though not absolutely necessary, that the student have completed an introductory course in control theory. One aim of the book is to present material in a simple, intuitive way. Specifically, the audience need not be strictly mechanical engineers, though much of the material is taken from that field. At Stanford, many electrical engineers, computer scientists, and mathematicians found the book quite readable.

Directly, this book is of use to those engineers developing robotic systems, but the material should be viewed as important background material for anyone who will be involved with robotics. In much the same way that software developers have usually studied at least some hardware, people not directly involved with the mechanics and control of robots should have some such background as that offered by this text.

Like the second edition, the third edition is organized into 13 chapters. The material will fit comfortably into an academic semester; teaching the material within an academic quarter will probably require the instructor to choose a couple of chapters to omit. Even at that pace, all of the topics cannot be covered in great depth. In some ways, the book is organized with this in mind; for example, most chapters present only one approach to solving the problem at hand. One of the challenges of writing this book has been in trying to do justice to the topics covered 'within the time constraints of usual teaching situations. One method employed to this end was to consider only material that directly affects the study of mechanical manipulation.

At the end of each chapter is a set of exercises. Each exercise has been assigned a difficulty factor, indicated in square brackets following the exercise's number. Difficulties vary between 00 and 50, where 00 is trivial and 50 is an unsolved research problem. Of course, what one person finds difficult, another might find easy, so some readers will find the factors misleading in some cases. Nevertheless, an effort has been made to appraise the difficulty of the exercises.

At the end of each chapter there is a programming assignment in which the student applies the subject matter of the corresponding chapter to a simple three-jointed planar manipulator. This simple manipulator is complex enough to demonstrate nearly all the principles of general manipulators without bogging the student down in too much complexity. Each programming assignment builds upon the previous ones, until, at the end of the course, the student has an entire library of manipulator software.

Additionally, with the third edition we have added MATLAB exercises to the book. There are a total of 12 MATLAB exercises associated with Chapters 1 through 9. These exercises were developed by Prof. Robert L. Williams II of Ohio University, and we are greatly indebted to him for this contribution. These exercises can be used with the MATLAB Robotics Toolbox created by Peter Corke, Principal Research Scientist with CSIRO in Australia.

Chapter 1 is an introduction to the field of robotics. It introduces some background material, a few fundamental ideas, and the adopted notation of the book, and it previews the material in the later chapters.

Chapter 2 covers the mathematics used to describe positions and orientations in 3-space. This is extremely important material: By definition, mechanical manipulation concerns itself with moving objects (parts, tools, the robot itself) around in space. We need ways to describe these actions in a way that is easily understood and is as intuitive as possible.

Chapters 3 and 4 deal with the geometry of mechanical manipulators. They introduce the branch of mechanical engineering known as kinematics, the study of motion without regard to the forces that cause it. In these chapters, we deal with the kinematics of manipulators, but restrict ourselves to static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and static forces.

In Chapter 6, we deal for the first time with the forces and moments required to cause motion of a manipulator. This is the problem of manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator in terms of trajectories through space.

Chapter 8 many topics related to the mechanical design of a manipulator. For example, how many joints are appropriate, of what type should they be, and how should they be arranged?

In Chapters 9 and 10, we study methods of controlling a manipulator (usually with a digital computer) so that it will faithfully track a desired position trajectory through space. Chapter 9 restricts attention to linear control methods; Chapter 10 extends these considerations to the nonlinear realm.

Chapter 11 covers the field of active force control with a manipulator. That is, we discuss how to control the application of forces by the manipulator. This mode of control is important when the manipulator comes into contact with the environment around it, such as during the washing of a window with a sponge.

Chapter 12 overviews methods of programming robots, specifically the elements needed in a robot programming system, and the particular problems associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems, which represent the latest extension to the man-robot interface.

I would like to thank the many people who have contributed their time to helping me with this book. First, my thanks to the students of Stanford's ME219 in the autumn of 1983 through 1985, who suffered through the first drafts, found many errors, and provided many suggestions. Professor Bernard Roth has contributed in many ways, both through constructive criticism of the manuscript and by providing me with an environment in which to complete the first edition. At SILMA Inc., I enjoyed a stimulating environment, plus resources that aided in completing the second edition. Dr. Jeff Kerr wrote the first draft of Chapter 8.

Prof. Robert L. Williams II contributed the MATLAB exercises found at the end of each chapter, and Peter Corke expanded his Robotics Toolbox to support this book's style of the Denavit-Hartenberg notation. I owe a debt to my previous mentors in robotics: Marc Raibert, Carl Ruoff, Tom Binford, and Bernard Roth.

Many others around Stanford, SILMA, Adept, and elsewhere have helped in various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling, A1 Barr, Stephen Boyd, Chuck Buckley, Joel Burdick, Jim Callan, Brian Carlisle, Monique Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal, Chris Goad, Ron Goldman, Bill Hamilton, Steve Holland, Peter Jackson, Eric Jacobs, Johann Jager, Paul James, Jeff Kerr, Oussama Khatib, Jim Kramer, Dave Lowe, Jim Maples, Dave Marimont, Dave Meer, Kent Ohlund, Madhusudan Raghavan, Richard Roy, Ken Salisbury, Bruce Shimano, Donalda Speight, Bob Tilove, Sandy Wells, and Dave Williams.

The students of Prof. Roth's Robotics Class of 2002 at Stanford used the second edition and forwarded many reminders of the mistakes that needed to get fixed for the third edition.

Finally I wish to thank Tom Robbins at Prentice Hall for his guidance with the first edition and now again with the present edition.

J.J.C.

Most helpful customer reviews

0 of 0 people found the following review helpful. Five Stars By JohnnySmithGuitarist Excellent price, super fast service, can't ask for better!

33 of 37 people found the following review helpful.

Typo ridden clunker...

By A discerning reader

The textbook attempts to cover basic kinematics, forward and backward chaining through the Euclidean approach to describe DH conventions, torque, and so forth. The first three chapters would lead one to expect an excellent textbook, and then the textbook descends into a nightmare.

The notation is cobbled together from so many different disciplines, we had to make study sheets to figure out what was said. There is no summary of formula or notation. Once there are a dozen notations in play, the typos begin. In chapter six alone, we counted over a dozen formulas with the wrong symbols or missing terms.

Even with these flaws, the book fails to deliver. The first half of the book has a theme: using transforms on DH conventions to derive position, accelleration, force and torque. Chapter seven covers a number of trajectory planning algorithms. The rest of the book adopts new notation and slowly explores control methods, stretching out simple solutions over many chapters. At the end, the reader still has no idea how to evaluate between the various control methods presented, aside from learning that more modeling is better. No alternatives are presented to the author's single thread, and the book misses concepts such as variable gains, force field collision avoidence, calibration, and Keynes notation.

There is a good topic in here screaming to get out. If you delve past the first four chapters, you will be screaming to get out.

17 of 19 people found the following review helpful.

Sloppy

By M. Woodruff

My advice to any student who finds that this book is required course material is to choose a different class. The instructor who chooses this book demonstrates very poor judgment.

Its introduction says this book "evolved from class notes." It hasn't evolved very far. It's sloppy, outdated, and badly typeset. None of the topics are adequately developed: 14 pages, for instance, is totally inadequate to develop control theory. Few of the references are more recent than 1990, and some of the text is almost laughably obsolete, like the paragraph discussing the expense of maintaining a table of sines in memory. (Craig cites a reference from 1981 when discussing the computation of trigonometric functions.)

While it describes itself as a book on robotics in general, this is really a book on the analysis of manipulator arms. If you are interested in other types of robotic systems, like semi-autonomous vehicles, prepare for disappointment. And if you are interested in the analysis of manipulator arms, prepare for disappointment anyway. This is a very difficult book to follow, due to the author's inconsistencies in notation and superficial coverage of important topics.

Ordinarily, the cues indicating that TeX has been used to prepare a book are subtle: good looking page layout and lots of well-formatted formulae. In this case, sadly, the book is peppered with obvious TeX mistakes. Nowhere is this more obvious than in the worked exercises in the back, where typos seem to have swallowed several section headings, and in one place "quad" has actually been printed where there was supposed to be a space (\quad). The author teaches at Stanford; if I were Donald Knuth, I would visit his office and ask him kindly to stop abusing my typesetting system.

This book reflects badly on the otherwise well-regarded Stanford robotics program, as well as on Pearson press, who should fire whoever edited this mess.

See all 24 customer reviews...

So, merely be below, find the publication Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig now and review that rapidly. Be the very first to review this book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig by downloading and install in the link. We have some various other publications to check out in this website. So, you could find them additionally quickly. Well, now we have done to supply you the most effective publication to review today, this Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig is truly ideal for you. Never ever overlook that you require this book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig to make far better life. On the internet e-book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig will really offer easy of everything to check out and take the perks.

From the Back Cover

An essential book for engineers developing robotic systems, as well as anyone involved with the mechanics, control, or programming of robotic systems. Now in its third edition, the first edition of this classic text was published approximately 20 years ago. The second edition has been in print and highly successful for 16 years.

The book introduces the science and technology of mechanical manipulation. The third edition is organized into 13 chapters.

Numerous exercises and a programming assignment appear at the end of each chapter. Computational aspects of problems are emphasized throughout the book. New in the third edition are MATLAB® exercises.

Excerpt. © Reprinted by permission. All rights reserved.

Scientists often have the feeling that, through their work, they are learning about some aspect of themselves. Physicists see this connection in their work; so do, for example, psychologists and chemists. In the study of robotics, the connection between the field of study and ourselves is unusually obvious. And, unlike a science that seeks only to analyze, robotics as currently pursued takes the engineering bent toward synthesis. Perhaps it is for these reasons that the field fascinates so many of us.

The study of robotics concerns itself with the desire to synthesize some aspects of human function by the use of mechanisms, sensors, actuators, and computers. Obviously, this is a huge undertaking, which seems certain to require a multitude of ideas from various "classical" fields.

Currently, different aspects of robotics research are carried out by experts in various fields. It is usually not the case that any single individual has the entire area of robotics in his or her grasp. A partitioning of the field is natural to expect. At a relatively high level of abstraction, splitting robotics into four major areas seems reasonable: mechanical manipulation, locomotion, computer vision, and artificial intelligence.

This book introduces the science and engineering of mechanical manipulation. This subdiscipline of robotics has its foundations in several classical fields. The major relevant fields are mechanics, control theory, and

computer science. In this book, Chapters 1 through 8 cover topics from mechanical engineering and mathematics, Chapters 9 through 11 cover control-theoretical material, and Chapters 12 and 13 might be classed as computer-science material. Additionally, the book emphasizes computational aspects of the problems throughout; for example, each chapter that is concerned predominantly with mechanics has a brief section devoted to computational considerations.

This book evolved from class notes used to teach "Introduction to Robotics" at Stanford University during the autumns of 1983 through 1985. The first and second editions have been used at many institutions from 1986 through 2002. The third edition has benefited from this use and incorporates corrections and improvements due to feedback from many sources. Thanks to all those who sent corrections to the author.

This book is appropriate for a senior undergraduate- or first-year graduate-level course. It is helpful if the student has had one basic course in statics and dynamics and a course in linear algebra and can program in a high-level language. Additionally, it is helpful, though not absolutely necessary, that the student have completed an introductory course in control theory. One aim of the book is to present material in a simple, intuitive way. Specifically, the audience need not be strictly mechanical engineers, though much of the material is taken from that field. At Stanford, many electrical engineers, computer scientists, and mathematicians found the book quite readable.

Directly, this book is of use to those engineers developing robotic systems, but the material should be viewed as important background material for anyone who will be involved with robotics. In much the same way that software developers have usually studied at least some hardware, people not directly involved with the mechanics and control of robots should have some such background as that offered by this text.

Like the second edition, the third edition is organized into 13 chapters. The material will fit comfortably into an academic semester; teaching the material within an academic quarter will probably require the instructor to choose a couple of chapters to omit. Even at that pace, all of the topics cannot be covered in great depth. In some ways, the book is organized with this in mind; for example, most chapters present only one approach to solving the problem at hand. One of the challenges of writing this book has been in trying to do justice to the topics covered 'within the time constraints of usual teaching situations. One method employed to this end was to consider only material that directly affects the study of mechanical manipulation.

At the end of each chapter is a set of exercises. Each exercise has been assigned a difficulty factor, indicated in square brackets following the exercise's number. Difficulties vary between 00 and 50, where 00 is trivial and 50 is an unsolved research problem. Of course, what one person finds difficult, another might find easy, so some readers will find the factors misleading in some cases. Nevertheless, an effort has been made to appraise the difficulty of the exercises.

At the end of each chapter there is a programming assignment in which the student applies the subject matter of the corresponding chapter to a simple three-jointed planar manipulator. This simple manipulator is complex enough to demonstrate nearly all the principles of general manipulators without bogging the student down in too much complexity. Each programming assignment builds upon the previous ones, until, at the end of the course, the student has an entire library of manipulator software.

Additionally, with the third edition we have added MATLAB exercises to the book. There are a total of 12 MATLAB exercises associated with Chapters 1 through 9. These exercises were developed by Prof. Robert L. Williams II of Ohio University, and we are greatly indebted to him for this contribution. These exercises can be used with the MATLAB Robotics Toolbox created by Peter Corke, Principal Research Scientist with CSIRO in Australia.

Chapter 1 is an introduction to the field of robotics. It introduces some background material, a few

fundamental ideas, and the adopted notation of the book, and it previews the material in the later chapters.

Chapter 2 covers the mathematics used to describe positions and orientations in 3-space. This is extremely important material: By definition, mechanical manipulation concerns itself with moving objects (parts, tools, the robot itself) around in space. We need ways to describe these actions in a way that is easily understood and is as intuitive as possible.

Chapters 3 and 4 deal with the geometry of mechanical manipulators. They introduce the branch of mechanical engineering known as kinematics, the study of motion without regard to the forces that cause it. In these chapters, we deal with the kinematics of manipulators, but restrict ourselves to static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and static forces.

In Chapter 6, we deal for the first time with the forces and moments required to cause motion of a manipulator. This is the problem of manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator in terms of trajectories through space.

Chapter 8 many topics related to the mechanical design of a manipulator. For example, how many joints are appropriate, of what type should they be, and how should they be arranged?

In Chapters 9 and 10, we study methods of controlling a manipulator (usually with a digital computer) so that it will faithfully track a desired position trajectory through space. Chapter 9 restricts attention to linear control methods; Chapter 10 extends these considerations to the nonlinear realm.

Chapter 11 covers the field of active force control with a manipulator. That is, we discuss how to control the application of forces by the manipulator. This mode of control is important when the manipulator comes into contact with the environment around it, such as during the washing of a window with a sponge.

Chapter 12 overviews methods of programming robots, specifically the elements needed in a robot programming system, and the particular problems associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems, which represent the latest extension to the man-robot interface.

I would like to thank the many people who have contributed their time to helping me with this book. First, my thanks to the students of Stanford's ME219 in the autumn of 1983 through 1985, who suffered through the first drafts, found many errors, and provided many suggestions. Professor Bernard Roth has contributed in many ways, both through constructive criticism of the manuscript and by providing me with an environment in which to complete the first edition. At SILMA Inc., I enjoyed a stimulating environment, plus resources that aided in completing the second edition. Dr. Jeff Kerr wrote the first draft of Chapter 8. Prof. Robert L. Williams II contributed the MATLAB exercises found at the end of each chapter, and Peter Corke expanded his Robotics Toolbox to support this book's style of the Denavit-Hartenberg notation. I owe a debt to my previous mentors in robotics: Marc Raibert, Carl Ruoff, Tom Binford, and Bernard Roth.

Many others around Stanford, SILMA, Adept, and elsewhere have helped in various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling, A1 Barr, Stephen Boyd, Chuck Buckley, Joel Burdick, Jim Callan, Brian Carlisle, Monique Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal, Chris Goad, Ron Goldman, Bill Hamilton, Steve Holland, Peter Jackson, Eric Jacobs, Johann Jager, Paul James, Jeff Kerr, Oussama Khatib, Jim Kramer, Dave Lowe, Jim Maples, Dave Marimont, Dave Meer, Kent Ohlund, Madhusudan Raghavan, Richard Roy, Ken Salisbury, Bruce Shimano, Donalda Speight, Bob Tilove, Sandy Wells, and Dave Williams.

The students of Prof. Roth's Robotics Class of 2002 at Stanford used the second edition and forwarded many reminders of the mistakes that needed to get fixed for the third edition.

Finally I wish to thank Tom Robbins at Prentice Hall for his guidance with the first edition and now again with the present edition.

J.J.C.

Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig. Satisfied reading! This is just what we want to claim to you who love reading a lot. Exactly what about you that assert that reading are only obligation? Don't bother, checking out behavior ought to be begun with some particular factors. One of them is checking out by responsibility. As exactly what we intend to offer right here, the book entitled Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig is not kind of obligated e-book. You can enjoy this e-book Introduction To Robotics: Mechanics And Control (3rd Edition) By John J. Craig to check out.